Cellular regulation of bovine intramuscular adipose tissue development and composition.
نویسندگان
چکیده
It is well documented that grain feeding stimulates adipogenesis in beef cattle, whereas pasture feeding depresses the development of adipose tissues, including intramuscular (i.m.) adipose tissue. Additionally, production practices that depress adipocyte differentiation also limit the synthesis of MUFA. Marbling scores and MUFA increase in parallel suggesting that stearoyl-coenzyme A desaturase (SCD) gene expression is closely associated with and necessary for marbling adipocyte differentiation. Similarly, marbling scores and fatty acid indices of SCD activity are depressed in response to dietary vitamin A restriction. In bovine preadipocytes, vitamins A and D both decrease glycerol-3-phosphate dehydrogenase (GPDH) activity, an index of adipocyte differentiation, whereas incubation of bovine preadipocytes with l-ascorbic acid-2-phosphate increases GPDH activity. Exposing bovine preadipocytes to zinc also stimulates adipogenesis, putatively by inhibiting nitric oxide (NO) production. However, incubation of bovine preadipocytes with arginine, a biological precursor of NO, strongly promotes differentiation in concert with increased SCD expression. This suggests that the effect of either arginine or zinc on adipogenesis is independent of NO synthesis in bovine preadipocytes. Enhanced expression of SCD is associated with a greater accumulation of MUFA both in bovine preadipocyte cultures and during development in growing steers. In bovine preadipocytes, trans-10, cis-12 CLA strongly depresses adipocyte differentiation and SCD gene expression, thereby reducing MUFA concentrations. The bovine preadipocyte culture studies suggest that any production practice that elevates vitamins A or D or trans-10, cis-12 CLA in bovine adipose tissue will reduce i.m. adipose tissue development. Conversely, supplementation with vitamin C or zinc may promote the development of i.m. adipose tissue.
منابع مشابه
Cellularity of bovine adipose tissue.
Subcutaneous and perirenal adipose tissue from bovine animals that had different fat deposition patterns were characterized in terms of the weight of the adipose tissue organ and adipose cell number and mean cell size as determined by electronic counting of osmium-fixed adipose cells. Similar parameters were also measured in the interfascicular adipose tissue dissected from four muscles. Adipos...
متن کاملThe Effect of Endurance Training On the Amount of Proteins Involved In the Regulation of Adipose Tissue Metabolism in Type 2 Diabetic Rats
Background: mTOR and CREB proteins are two important factors in cellular pathways and regulating fat tissue metabolism. Therefore, the aim of this research is the effect of endurance training on the amount of mTOR and CREB proteins in the adipose tissue of type 2 diabetic rats. Methods: In this experimental study, 18 rats 2-month-old male Sprague-Dawley rats with a mean weight of 270±20g were ...
متن کاملComparison of Metabolic Network between Muscle and Intramuscular Adipose Tissues in Hanwoo Beef Cattle Using a Systems Biology Approach
The interrelationship between muscle and adipose tissues plays a major role in determining the quality of carcass traits. The objective of this study was to compare metabolic differences between muscle and intramuscular adipose (IMA) tissues in the longissimus dorsi (LD) of Hanwoo (Bos taurus coreanae) using the RNA-seq technology and a systems biology approach. The LD sections between the 6th ...
متن کاملCloning, Expression, and Regulation of Bovine Cellular Retinoic Acid-binding Protein-II (CRABP-II) during Adipogenesis*
The mammalian cellular retinoic acid-binding proteins, CRABP-I and CRABP-II, bind retinoic acid which acts as an inducer of differentiation in several biological systems. To investigate a possible role for CRABP-II in bovine adipogenesis, we have cloned bovine CRABP-II cDNA and the coding region for CRABP-I. The predicted amino acid sequences of CRABP-II were highly conserved among several anim...
متن کاملTHE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE
Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 87 14 Suppl شماره
صفحات -
تاریخ انتشار 2009